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Solution 11

1. Use Baire category theorem to show that transcendental numbers are dense in the set of
real numbers.

Solution. A number is called algebraic if it is a root of some polynomial with integer
coefficients and it is transcendental otherwise. Let A be all algebraic numbers and T be all
transcendental numbers. We know that A is a countable set {aj}. Let An = {a1, · · · , an}
so A =

⋃
nAn is a countable union of closed and nowhere dense sets An. Hence A is of

first category. As T is the complement of A, it is a residual set. Since R is complete, T
is dense by Baire category theorem.

Alternatively, you may argue that the complement of each An is open and dense, and since
T is the intersection of all these complements, by Baire category theorem, any countable
intersection of open dense sets in a complete metric space is dense, hence T is dense.

2. A set E in a metric space is called a perfect set if, for each point x ∈ E and r > 0, the
ball Br(x)

⋂
E contains a point different from x.

(a) For each x in the perfect set E, there exists a sequence in E consisting of infinitely
many distinct points converging to x.

(b) Every complete perfect set is uncountable. Hint: Use Baire Category Theorem.

(c) Is (b) true without completeness?

Solution. (a). For each n ≥ 1, as (B1/n(x) \ {x})
⋂
E is nonempty, we pick a point from

it to form {xn}. Obviously, there are infinitely many distinct points in this sequence and
it converges to x as n→∞.

(b). Assume on the contrary that the perfect set E is countable, E = {an}, n ≥ 1. We
have E =

⋃∞
n=1{an}. Obviously every {an} is a closed set. On the other hand, every ball

containing an must contain some points different from an. We conclude that every {an}
is a closed set with empty interior. However, by assumption, (E, d) is a complete metric
space. By Baire Category Theorem E cannot have such decomposition. Therefore, it must
be uncountable.

Note. Applying to R, it gives another proof that R is uncountable.

(c). No. Simply consider Q under the Euclidean metric. It is a countable perfect set which
is not complete. Think of the Cauchy sequence {3, 3.1, 3.14, 3.141, 3.1415, 3.14159, · · · }
which is in Q but converges to π.

3. Optional. Let ‖ · ‖ be a norm on Rn.

(a) Show that ‖x‖ ≤ C‖x‖2 for some C where ‖ · ‖2 is the Euclidean metric.

(b) Deduce from (a) that the function x 7→ ‖x‖ is continuous with respect to the Euclidean
metric.

(c) Show that the inequality ‖x‖2 ≤ C ′‖x‖ for some C ′ also holds. Hint: Observe that
x 7→ ‖x‖ is positive on the unit sphere {x ∈ Rn : ‖x‖2 = 1} which is compact.

(d) Establish the theorem asserting any two norms in a finite dimensional vector space
are equivalent.
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Solution. (a). Let x = a1e1 + · · ·+ anen. By Cauchy-Schwarz Inequality

‖x‖ = ‖
∑
k

akek‖ ≤
∑
k

|ak| ‖e‖k ≤ C‖x‖2 ,

where

C =

√∑
k

‖ek‖2 .

(b). Let xn → x in ‖ · ‖2, that is, ‖xn − x‖2 → 0. By (a), ‖xn − x‖ → 0 too.

(c). The map x 7→ ‖x‖ is continuous and positive on the unit sphere. As the sphere is
compact, it has a positive lower bound, that is, ‖x‖ ≥ ρ > 0 whenever ‖x‖2 = 1. Now,
given any non-zero vector x, x/‖x‖2 belong to the unit sphere, so∥∥∥∥ x

‖x‖2

∥∥∥∥ ≥ ρ ,
that is, ‖x‖ ≥ ρ‖x‖2 .
(d). Let ‖·‖a and ‖·‖b be two norms on the finite dim space V . Fix a basis {v1, · · · , vn} in
V . Every vector x has a unique representation x =

∑n
k=1 akvk. The map x 7→ (a1, · · · , an)

is a linear bijection (linear isomorphism) from V to Rn. It induces two norms on Rn by
‖a‖a = ‖

∑
k akvk‖a and ‖a‖b = ‖

∑
k akvk‖b (using the same notations). From (c) both

are equivalent to the Euclidean norm, hence they are also equivalent to each other. Going
back to V , we conclude that they are equivalent too.

4. Let P be the vector space consisting of all polynomials. Show that we cannot find a norm
on P so that it becomes a Banach space.

Solution. Let Pn be the vector subspace of P consisting of all polynomials of degree less
than or equal to n. Then P =

⋃∞
n=1 Pn. Any norm on Pn is equivalent to the “Euclidean

norm”: ‖p‖ = (
∑n

k=0 a
2
k)1/2 when p(x) =

∑n
k=0 akx

k. Using this fact, one can show that
Pn is a closed subspace of P in any norm. On the other hand, it is clear that Pn is nowhere
dense. By Baire category theorem, it is impossible to decompose P as a union of nowhere
dense sets when its induced metric is complete.

5. Let F be a subset of C(X) where X is a complete metric space. Suppose that for each
x ∈ X, there exists a constant M depending on x such that |f(x)| ≤ M, ∀f ∈ F . Prove
that there exists an open set G in X and a constant C such that supx∈G |f(x)| ≤ C for
all f ∈ F . Suggestion: Consider the decomposition of X into the sets Xn = {x ∈ X :
|f(x)| ≤ n, ∀f ∈ F}.
Solution. By assumption, X =

⋃
nXn. It is clear that each Xn is closed. By the

completeness of X we appeal to Baire Category Theorem to conclude that there is some
n1 such that Xn1 has non-empty interior, call it G. Then |f(x)| ≤ n1, ∀x ∈ G, for all
f ∈ F .

6. Optional. A function is called non-monotonic if if is not monotonic on every subinterval.
Show that all non-monotonic functions form a dense set in C[a, b]. Hint: Consider the sets

En = {f ∈ C[a, b] : ∃x ∈ [a, b] such that (f(y)− f(x))(y − x) ≥ 0, ∀y, |y − x| ≤ 1/n}.

(Extend f to R by setting f(x) = f(a), x < a,= f(b), x > b.)
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Solution. We will show that each En is closed and . Let fk → f uniformly and xk satisfy
(fk(y) − fk(xk))(y − xk) ≥ 0 for y ∈ [xk − 1/n, xk + 1/n]. By passing to a subsequence,
one may assume xk → x0. Then

0 ≤ (fk(y)− fk(xk))(y − xk)

= (fk(y)− f(y))(y − xk) + (f(y)− f(xk))(y − xk) + (f(xk)− fk(xk))(y − xk) .

Letting k →∞, we obtain 0 ≤ (f(y)− f(x0))(y − x0), hence En is closed.

Next, pick a polynomial p satisfying ‖p − f‖∞ < ε/2. We claim that there exists some
g, ‖p − g‖∞ ≤ ε/2, does not belong to En. Then ‖f − g‖∞ < ‖f − p‖∞ + ‖p − g‖∞ < ε,
which shows that En is nowhere dense. Let ϕ be the jig-saw function that is described
in our notes such that ϕ([a, b]) = [−1, 1] and slope equal to a large number ±K and
consider g = p + ε/2ϕ. For x ∈ [a, b], we can find some y, |y − x| < 1/n, such that
(ϕ(y)− ϕ(x))(y − x) ≤ −K/3(y − x)2.

(g(y)− g(x))(y − x) = (p(y)− p(x) +
ε

2
(ϕ(y)− ϕ(x))(y − x) ≤ L(y − x)2 − ε

2

K

3
(y − x)2.

(L is a Lipschitz constant for p.) By choosing K such that L− εK/6 < 0, we get (g(y)−
g(x))(y − x) < 0. In other words, g does not belong to En.

We have shown that En is closed and nowhere dense. Similarly, we can show that the set
Fn = {f ∈ C[a, b] : ∃x ∈ [a, b] such that (f(y) − f(x))(y − x) ≤ 0, ∀y, |y − x| ≤ 1/n} is
closed and nowhere dense. If f does not belong to En ∪ Fn, in every interval of the form
[x−1/n, x+1/n], x ∈ [a, b], there are points y1, y2 such that (f(y1)−f(x))(y1−x) < 0, and
(f(y2)− f(x))(y2−x) > 0. No matter what the relative positions of y1, y2 are, one verifies
that f is not monotone on [x−1/n, x+1/n]. Now, if f does not belong to En∪Fn for all n,
f is not monotone on every interval of the form [x− 1/n, x+ 1/n], x ∈ [a, b], n ≥ 1. Since
every subinterval of [a, b] must contain an interval of the form [x − 1/n, x + 1/n], these
f are non-monotonic. According to Baire Category theorem, these functions are dense in
C[a, b].


