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Solution 11

1. Use Baire category theorem to show that transcendental numbers are dense in the set of
real numbers.

Solution. A number is called algebraic if it is a root of some polynomial with integer
coefficients and it is transcendental otherwise. Let A be all algebraic numbers and 7 be all
transcendental numbers. We know that A is a countable set {a;}. Let A, = {a1,--- ,an}
so A =, Ay is a countable union of closed and nowhere dense sets A,. Hence A is of
first category. As 7T is the complement of A, it is a residual set. Since R is complete, T
is dense by Baire category theorem.

Alternatively, you may argue that the complement of each A,, is open and dense, and since
T is the intersection of all these complements, by Baire category theorem, any countable
intersection of open dense sets in a complete metric space is dense, hence T is dense.

2. A set E in a metric space is called a perfect set if, for each point x € F and r > 0, the
ball B,(z) () E contains a point different from z.

(a) For each x in the perfect set E, there exists a sequence in F consisting of infinitely
many distinct points converging to x.

(b) Every complete perfect set is uncountable. Hint: Use Baire Category Theorem.

(c) Is (b) true without completeness?

Solution. (a). For each n > 1, as (By/,(x)\ {z}) ] £ is nonempty, we pick a point from
it to form {z,}. Obviously, there are infinitely many distinct points in this sequence and
it converges to x as n — oo.

(b). Assume on the contrary that the perfect set E is countable, E = {a,},n > 1. We
have E = [J;2 ;{an}. Obviously every {a,} is a closed set. On the other hand, every ball
containing a,, must contain some points different from a,. We conclude that every {a,}
is a closed set with empty interior. However, by assumption, (F,d) is a complete metric
space. By Baire Category Theorem E cannot have such decomposition. Therefore, it must
be uncountable.

Note. Applying to R, it gives another proof that R is uncountable.

(c). No. Simply consider Q under the Euclidean metric. It is a countable perfect set which
is not complete. Think of the Cauchy sequence {3,3.1,3.14,3.141,3.1415, 3.14159, - - - }
which is in Q but converges to .

3. Optional. Let || - || be a norm on R™.

(a) Show that ||z|| < C||z||2 for some C where || - ||2 is the Euclidean metric.

(b) Deduce from (a) that the function x — ||z|| is continuous with respect to the Euclidean
metric.

(¢) Show that the inequality ||z||2 < C'||z|| for some C” also holds. Hint: Observe that
x > ||x|| is positive on the unit sphere {x € R™ : ||z|2 = 1} which is compact.

(d) Establish the theorem asserting any two norms in a finite dimensional vector space
are equivalent.
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Solution. (a). Let x = aje; + - -+ + ape,. By Cauchy-Schwarz Inequality

lzll =11 akexll < D lax] llellx < Cll]lz
k k

C:W.

(b). Let x,, — x in || - ||2, that is, ||z, — z||2 = 0. By (a), ||z, — z|| — 0 too.

where

(c). The map x + ||z| is continuous and positive on the unit sphere. As the sphere is
compact, it has a positive lower bound, that is, ||z|| > p > 0 whenever |z|2 = 1. Now,
given any non-zero vector z, z/||z||2 belong to the unit sphere, so

Zp,

]2

that is, [l > pllzs -

(d). Let ||-||o and ||-||» be two norms on the finite dim space V. Fix a basis {v1,--- ,v,} in
V. Every vector  has a unique representation = Y, _; axvr. The map z — (a1, ,an)
is a linear bijection (linear isomorphism) from V' to R™. It induces two norms on R" by
lalla = || >k arville and |lally = || >°f axvk|ly (using the same notations). From (c) both
are equivalent to the Euclidean norm, hence they are also equivalent to each other. Going
back to V', we conclude that they are equivalent too.

4. Let P be the vector space consisting of all polynomials. Show that we cannot find a norm
on P so that it becomes a Banach space.

Solution. Let P, be the vector subspace of P consisting of all polynomials of degree less
than or equal to n. Then P = J;7, P,. Any norm on P, is equivalent to the “Euclidean
norm”: |[p|| = (Xf_ya?)"/? when p(z) = S_p_, axz®. Using this fact, one can show that
P, is a closed subspace of P in any norm. On the other hand, it is clear that P, is nowhere
dense. By Baire category theorem, it is impossible to decompose P as a union of nowhere
dense sets when its induced metric is complete.

5. Let F be a subset of C(X) where X is a complete metric space. Suppose that for each
x € X, there exists a constant M depending on z such that |f(z)] < M, Vf € F. Prove
that there exists an open set G in X and a constant C such that sup,cq |f(z)| < C for
all f € F. Suggestion: Consider the decomposition of X into the sets X,, = {z € X :
|f(@)| <n, VfeF}

Solution. By assumption, X = (J,, X,. It is clear that each X, is closed. By the
completeness of X we appeal to Baire Category Theorem to conclude that there is some
ny such that X, has non-empty interior, call it G. Then |f(z)| < n;, Vo € G, for all
ferF.

6. Optional. A function is called non-monotonic if if is not monotonic on every subinterval.
Show that all non-monotonic functions form a dense set in Ca,b]. Hint: Consider the sets

En={f € Cla,b] : Iz € [a,b] such that (f(y) — f(x))(y —x) >0, Yy, |y —z| < 1/n}.

(Extend f to R by setting f(x) = f(a),x < a,= f(b),z >b.)
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Solution. We will show that each &, is closed and . Let f; — f uniformly and xj satisfy
(fx(y) — fu(zr))(y — xg) > 0 for y € [z — 1/n,x + 1/n]. By passing to a subsequence,
one may assume xy — . Then

0 < (fuly) = frlor))(y — 1)
= (fe(w) = fFW)y —zx) + (f(y) — fl2e)(y — 2x) + (f(2x) — ful@e))(y — 2x) -

Letting k — oo, we obtain 0 < (f(y) — f(x0))(y — x¢), hence &, is closed.

Next, pick a polynomial p satisfying ||p — f|lcc < £/2. We claim that there exists some
9, I[P = glloe < €/2, does not belong to £,. Then ||f — glloo < [f = Plloc + [l — gl < &,
which shows that &, is nowhere dense. Let ¢ be the jig-saw function that is described
in our notes such that ¢([a,b]) = [—1,1] and slope equal to a large number +K and
consider ¢ = p + £/2¢. For z € [a,b], we can find some y,|y — z| < 1/n, such that

(p(y) — o(x))(y —x) < —K/3(y — x)*.

€ 2

(9(y) = 9(@)(y = 2) = (p(y) — p(2) + () = (x))(y —2) < Ly - 2)

e K 9
- §§(y —x)”.
(L is a Lipschitz constant for p.) By choosing K such that L — eK/6 < 0, we get (g(y) —

g(x))(y — z) < 0. In other words, g does not belong to &,.

We have shown that &, is closed and nowhere dense. Similarly, we can show that the set
Fn =A{f € Cla,b] : 3z € [a,b] such that (f(y) — f(z))(y —z) <0, Yy, |y —z| <1/n}is
closed and nowhere dense. If f does not belong to &, U F,, in every interval of the form
[t—1/n,x+1/n],x € [a,b], there are points y1, y2 such that (f(y1)— f(x))(y1 —z) < 0, and
(f(y2) — f(x))(y2 —x) > 0. No matter what the relative positions of y;, y2 are, one verifies
that f is not monotone on [z —1/n,z+1/n]. Now, if f does not belong to &, UF,, for all n,
f is not monotone on every interval of the form [z — 1/n,z + 1/n],z € [a,b],n > 1. Since
every subinterval of [a,b] must contain an interval of the form [x — 1/n,z + 1/n], these
f are non-monotonic. According to Baire Category theorem, these functions are dense in
Cla,b].



